Connect with us
Eaton-3D-printing

Components

Eaton launches new metal 3D printing program

Advertisement

David Sickels is the Associate Editor of Tire Review and Fleet Equipment magazines. He has a history of working in the media, marketing and automotive industries in both print and online.

Eaton‘s vehicle group is implementing a new 3D metal printing program as a part of its “Industry 4.0” strategy to reduce development time and improve efficiency.

Advertisement
Click Here to Read More
Advertisement

The first metal printer system was installed at the Kings Mountain, N.C., facility, and a global deployment of 3D polymer printing technology is slated to be completed by first-quarter 2021, Eaton says.

The company says the 3D printers are being utilized to create high-quality fixtures, safety devices, automation grippers for assembly and handling, and maintenance components requiring replacement. Prototype development is following the same strategy to support faster product development trials and improve efficiency.

To speed up the design process, scanners are used to create 3D models of existing components, Eaton says, adding that this process allows components to be reverse-engineered to better leverage 3D printing capabilities, including changing component design to use less material, the addition of different topography elements or consolidating multiple components into a single part.

The process to print metal parts and components begins with powdered metal stored in a rod and held together by wax and a polymer binder. Similar to extrusion, the metal is melted, and the 3D printer begins to add layer after layer, based on its programmed schematics.

Once the printing process is complete, the part or component is run through a chemical bath to remove most of the polymer binder. The part then goes through a furnace to remove the remaining wax and polymer, and to fuse the metal material in a high-density structure. Depending on what the printed part or component is to be used for and which material it was printed with, an additional heat treatment process can be performed to increase part strength even further.

Advertisement

The total lead time to get a component printed depends on several criteria, including the size and intricacy of the part. Depending on the part or component design and required tolerances, it also can undergo post-processing. The debinding operation and heat treatment are done in batches, with several different components going through these processes together while the next components are being printed. Although the printer, debinding and furnace work in an integrated loop, there is flexibility to increase the number of printers without having to duplicate either the debinding or furnace.

Going forward, Eaton says the vehicle group’s 3D printing capabilities will be used to further reduce production time and drive efficiency. Learn more about the vehicle group’s Industry 4.0 technologies and benefits.

Advertisement

POPULAR POSTS

Sponsored Content

Business Intelligence Tools Monitoring & Analyzing M&R Data Keep Fleet Managers In Check

Sponsored Content

Keep your fleet running as efficiently as our engines.

Sponsored Content

The ‘S’ Factors

Sponsored Content

Avoiding Premature Bearing Failure

Connect
Do NOT follow this link or you will be banned from the site!