How AI, edge computing, IoT and the cloud are reshaping fleet management

How AI, edge computing, IoT and the cloud are reshaping fleet management

The amount of data produced every day keeps growing. As a result, these businesses have more data than ever at their disposal.

As fleet companies look to modernize their vehicles, the benefits of connected vehicles could make these technologies the new standard for fleet management. In fact, 86% of connected fleet operators already surveyed have reported a solid return on their investment in connected fleet technology within one year through reduced operational costs.

Furthermore, connected transportation fleets with advanced telematics technology today offer additional benefits in terms of managing and maintaining vehicles. Another study illustrated a 13% reduction in fuel costs for surveyed businesses, along with improvements to preventive maintenance. It also showed a 40% reduction in harsh braking, showing modifications to driving habits that could both contribute to parts longevity and improve driver safety.

This means transportation fleets, insurance providers, maintenance and aftermarket companies are all looking to harness more of this intelligent telematics data. However, the amount of data produced every day keeps growing. As a result, these businesses have more data than ever at their disposal to help make informed business decisions. This vast amount of data brings plenty of new challenges in capturing, digesting and analyzing the entirety of the data in a cost-effective manner.

To truly be effective and useful, data must be tracked, managed, cleaned, secured, and enriched throughout its journey to produce the right insight. This is why some companies are turning to new processing capabilities to make this happen so that the data is properly used and computed.

Embedded systems technology has been the norm

Traditional telematics systems have relied upon embedded systems which are devices designed to access, collect, analyze (in-vehicle) and control data in electronic equipment, to solve a set of problems. These embedded systems have been widely used, especially in household appliances, and today the technology is growing in the use of analyzing vehicle data.

The existing solution in the market is to use the low latency of 5G. Using AI and GPU acceleration on AWS Wavelength or Azure Edge Zone, vehicle OEMs can offload onboard vehicle processors to the cloud where possible. Traffic between 5G devices and content or application servers hosted in Wavelength zones do not traverse the internet, resulting in reduced variability and loss of content.

To ensure optimum accuracy and richness of datasets, and to maximize usability, sensors embedded within the vehicles are used to collect the data and transmit it wirelessly, between vehicles and a central cloud authority, in near real-time. Depending on the use cases that are increasingly becoming real-time oriented like roadside assistance, ADAS and active driver score and vehicle score reporting, the need for lower latency and throughput have become much larger in focus for fleets, insurers and other companies leveraging the data.

However, while 5G solves this to a large extent, the cost incurred for the volume of this data being collected and transmitted to the cloud remains cost prohibitive. This makes it imperative to identify advanced embedded compute capability inside the car for edge processing to happen as efficiently as possible.

The rise of vehicle to cloud communication

To increase the bandwidth efficiency and mitigate data latency issues, it’s better to conduct the critical data processing at the edge in the vehicle and only share event-related information to the cloud. In-vehicle edge computing has become critical to ensure that connected vehicles can function at scale due to the applications and data being closer to the source, providing a quicker turnaround and drastically improving the system’s performance.

Technological advancements have made it possible for embedded systems to communicate with sensors, within the vehicle as well as the cloud server, in an effective and efficient manner. Leveraging a distributed computing environment that optimizes data exchange as well as data storage, IoT improves response times and saves bandwidth for a swift data experience. Integrating this architecture with a cloud-based platform further helps to create an end-to-end communications system. Collectively, the edge cloud and embedded intelligence duo connects the edge devices (vehicle sensors) to the IT infrastructure to make way for a new range of user-centric applications based on real-world environments.

This has a wide range of applications across verticals where this data can be consumed and monetized for the OEMs. The most obvious use case is for aftermarket and vehicle maintenance where very effective algorithms can analyze the health of the vehicle in near real-time to suggest remedies for impending vehicle failures across vehicle assets like engine, oil, battery, tires and so on. Fleets leveraging this data can have maintenance teams ready to perform service on a vehicle that returns in a far more efficient manner since much of the diagnostic work has been performed in real time.

Additionally, insurance and extended warranties can benefit by providing active driver behavior analysis so that training modules can be drawn up specific to individual drivers based on actual driving behavior history and analysis. For fleets, the active monitoring of both the vehicle and driver scores can enable reduced TCO (total cost of ownership) for the fleet operators to reduce losses owing to pilferage, theft and negligence while again providing active training to the drivers.

Powering the future of fleet management

AI-powered analytics leveraging IoT, edge computing and the cloud are rapidly changing how fleet management is performed, making it more efficient and effective than ever. The ability of AI to analyze large amounts of information from telematics devices provides managers with valuable information to improve fleet efficiency, reduce costs and optimize productivity. From real-time analytics to driver safety management, AI is already changing the way fleets are managed.

The more data AI collects with OEM processing via the cloud, the better predictions it can make. This means safer, more intuitive automated vehicles in the future with more accurate routes with better real-time vehicle diagnostics.

About The Author: Sumit Chauhan is co-founder and chief operating officer of Cerebrum X, with more than 24 years of experience in automotive, IoT, telecoms and healthcare. Sumit has always played the leadership role that allowed him to manage a P&L of close to US $ 0.5B across various organizations, such as Aricent, Nokia and Harman, enriching their domestic as well as international business verticals. As co-founder of CerebrumX, he has applied his experience in the connected vehicle data domain to deliver the automotive industry with an AI-powered augmented deep learning platform (ADLP). Sumit is also passionate about mentoring and guiding the next generation of entrepreneurs.

You May Also Like

Epicor acquires Elite Extra

Elite Extra is a provider of cloud-based last-mile delivery solutions.

Epicor-Acquires-Elite-EXTRA

Software provider Epicor announced that it has acquired Elite Extra, provider of cloud-based last-mile delivery solutions.

Epicor said the acquisition will complement and strengthen its “ability to optimize last-mile logistics and solve supply chain challenges for customers across Epicor’s vertical industries. This will help distributors, independent service shops and dealers improve efficiency, reduce costs, and deliver a superior customer experience that builds loyalty and creates a competitive advantage,” said Epicor. Financial terms were not disclosed.

Geotab reaches 4 million subscriptions

The company reached three million subscriptions in 2022 and has added another million in just over a year.

Geotab-subscriptions
Noregon adds Road Worthiness feature to JPRO

Road Worthiness scans the vehicle and assesses its safety and compliance status to determine if the vehicle is ready to operate on public roads.

Noregon-JPRO-Certification-Service-Generic-1400
Panasonic enhances Toughbook 55 laptop

Panasonic Connect North America recently announced enhancements to the semi-rugged Toughbook 55 laptop. Related Articles – Doran announces tire monitoring integration with Platform Science – InCharge InControl CMS integrates with Geotab – FleetDrive 360 updates driver onboarding and management options The third generation of the Toughbook 55, the Mk3, makes use of the 13th Gen

Panasonic-Toughbook-1400
Doran announces tire monitoring integration with Platform Science

Users can have tire pressure and temperature information displayed in cab on a Platform Science tablet via the Doran TPMS mobile app.

Doran-Integrates-with-Platform-Science-1400

Other Posts

Truck service ventriloquism: A mechanic’s unforeseen tale

Believe it or not, trucks are unknowingly themselves all-star ventriloquists.

jake-column-1400
How spec’ing for fuel efficiency can help make fleets more sustainable

For every gallon of diesel saved, there’s a reduction of 22.4 pounds of CO2 emissions. This contributes to environmental sustainability.

Trucking-Sustainably-nov-1400
Fuel Efficiency Faceoff finish line

Now we come to the answer to the question that started it all:  How fuel efficient can a new truck driver be? Related Articles – Tim Hortons adds Volvo VNR Electric trucks to its fleet – Bendix Monterrey, Mexico technical center marks five years – Class 8 orders show expected decline in October, FTR says

Fuel-efficiency-faceoff-finish-line-1400
Five truck trend takeaways from November

The biggest stories from November focused on the latest truck trends, all in one place.